If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-20y+19=0
a = 4; b = -20; c = +19;
Δ = b2-4ac
Δ = -202-4·4·19
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{6}}{2*4}=\frac{20-4\sqrt{6}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{6}}{2*4}=\frac{20+4\sqrt{6}}{8} $
| 3x=−7x+26 | | 3/7x+4=1/7x+10 | | 7x^2−2 | | 3/2x+4=1/2x+13 | | 4x+10=7x-6 | | 3/5x+3=-2/5x+2 | | 3x2−13=95 | | `4x+20=90`. | | -0.9r-9.89-9.4r=-8.8r-3.74 | | 10=(2m+10) | | 5(2m-1)=25 | | 12m-14=34 | | 6y+27=-3 | | w+51/4=1/2 | | -3(y-84)=-30 | | 145+117+119+125+140+133+x=900 | | 3x+13=2x+112 | | 5x+12=60+2x | | r+9=56 | | 43-b/3=59 | | x+7=19x+13 | | 3x°=(5x-30)° | | -23x=-2116 | | (y/4)=12 | | r1000=7 | | v/2+-2=0 | | -17v=-153 | | 3=p70 | | 9x=3x2 | | (3x+9)+46+(6x-8)+(4x+2)+72+(7x-1)=360 | | c+11-11=c | | 2y+3=-31 |